NETS AND SEPARATED S-POSETS
author
Abstract:
Nets, useful topological tools, used to generalize certainconcepts that may only be general enough in the context of metricspaces. In this work we introduce this concept in an $S$-poset, aposet with an action of a posemigroup $S$ on it whichis a very useful structure in computer sciences and interestingfor mathematicians, and give the the concept of $S$-net. Using $S$-nets and itsconvergency we also give some characterizations of separated$S$-posets.Also, introducing the net-closure operators, we investigatethe counterparts of topological separation axioms on $S$-posetsand study their relation to separated $S$-posets.
similar resources
nets and separated s-posets
nets, useful topological tools, used to generalize certainconcepts that may only be general enough in the context of metricspaces. in this work we introduce this concept in an $s$-poset, aposet with an action of a posemigroup $s$ on it whichis a very useful structure in computer sciences and interestingfor mathematicians, and give the the concept of $s$-net. using $s$-nets and itsconvergency we...
full textSubpullbacks and coproducts of $S$-posets
In 2001, S. Bulman-Fleming et al. initiated the study of three flatness properties (weakly kernel flat, principally weakly kernel flat, translation kernel flat) of right acts $A_{S}$ over a monoid $S$ that can be described by means of when the functor $A_{S} otimes -$ preserves pullbacks. In this paper, we extend these results to $S$-posets and present equivalent descriptions of weakly kernel p...
full textRectifying Separated Nets
In our earlier paper [BuK] (see also McMullen’s paper [M]), we constructed examples of separated nets in the plane R2 which are not biLipschitz equivalent to the integer lattice Z2. These examples gave a negative answer to a question raised by H. Furstenberg and M. Gromov. Furstenberg asked this question in connection with Kakutani equivalence for R2-actions, [F]. Return times for a section of ...
full textSubpullbacks and Po-flatness Properties of S-posets
In (Golchin A. and Rezaei P., Subpullbacks and flatness properties of S-posets. Comm. Algebra. 37: 1995-2007 (2009)) study was initiated of flatness properties of right -posets over a pomonoid that can be described by surjectivity of corresponding to certain (sub)pullback diagrams and new properties such as and were discovered. In this article first of all we describe po-flatness propertie...
full textOrder dense injectivity of $S$-posets
In this paper, the notion of injectivity with respect to order dense embeddings in the category of $S$-posets, posets with a monotone action of a pomonoid $S$ on them, is studied. We give a criterion, like the Baer condition for injectivity of modules, or Skornjakov criterion for injectivity of $S$-sets, for the order dense injectivity. Also, we consider such injectivit...
full textCOGENERATOR AND SUBDIRECTLY IRREDUCIBLE IN THE CATEGORY OF S-POSETS
In this paper we study the notions of cogenerator and subdirectlyirreducible in the category of S-poset. First we give somenecessary and sufficient conditions for a cogenerator $S$-posets.Then we see that under some conditions, regular injectivityimplies generator and cogenerator. Recalling Birkhoff'sRepresentation Theorem for algebra, we study subdirectlyirreducible S-posets and give this theo...
full textMy Resources
Journal title
volume 1 issue 1
pages 33- 43
publication date 2013-09-15
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023